ADULT TREATMENT GUIDELINE Sickle Cell Disease

Drafted: 9/9/13, Robin Devan Peer Reviewed: October – December, 2013 Finalized: 1/2/14, Robin Devan

Revised:

I. Definition, Assessment, and Diagnosis

- a. **Definition**: Sickle Cell Disease is
 - i. the most common hemoglobinopathy in the United States.
 - ii. An Autosomal Recessive disorder involving abnormal hemoglobin
 - iii. Hemoglobin S (the hemoglobin that sickle cell patients have) differs from normal hemoglobin (Hb A) because of a substitution of valine for glutamic acid in the 6^{th} position in the β -globin gene.
 - iv. Causes an abnormal "sickled" shape of red blood cells
 - v. Results in vaso-occlusive phenomena and hemolysis
 - vi. A spectrum of diseases
 - 1. Sickle cell trait (Hb AS)
 - 2. Sickle cell anemia (Hb SS)
 - 3. Hemoglobin SC disease
 - 4. Sickle cell/Alpha Thalassemia
 - 5. Sickle cell/Beta Thalassemia (HbS-β-thalassemia)

b. Assessment

i. Sickle Cell Anemia

- 1. Periods of relatively good health with intermittent periods of crisis
- 2. Chronic anemia (hemoglobin of 6-9g/dL) appears between 3-6 months of age, when Hemoglobin F falls to low levels.
- 3. Turnover of red blood cells is 5-10 days, COMPARED TO THE NORMAL 120 DAYS.
- 4. Common Complications:
 - a. Bacterial infections, particularly pneumococcus.
 - Adults with sickle cell disease are often functionally asplenic, and therefore more susceptible to infection with encapsulated organisms.
 - b. Urinary tract infections and pyelonephritis
 - c. Osteomyelitis
 - d. Renal impairment
 - e. Jaundice
 - f. Cholelithiasis
 - g. High output cardiac failure
 - h. Left ventricular hypertrophy

- i. Cardiomegaly
- j. Stroke
- k. Liver failure
- 1. Pulmonary infection (ACUTE CHEST SYNDROME)
 - i. Common serious condition associated with the disease
 - ii. Occurs in 40% of patients with this disease
 - iii. Symptoms
 - 1. Pleuritic chest pain
 - 2. Fever
 - 3. Cough
 - 4. Lung infiltrates on CXR
 - 5. Hypoxia
 - iv. Etiology
 - 1. Infection
 - 2. Infarction
 - 3. Pulmonary sequestration
 - 4. Fat embolization from bone marrow
 - v. Treatment (See II.b.vii)
- m. Splenic Sequestration
 - i. Caused by intra-splenic trapping of red blood cells
 - ii. Causes an acute drop in hemoglobin
 - 1. At least 2g/dl drop from steady-state levels
 - 2. Markedly elevated reticulocyte count
 - 3. Acutely enlarging spleen
 - 4. Recurrence rate is high
 - iii. Treatment (See II.b.viii)

ii. Sickle Cell Crisis

- 1. Often preceded by infection
- 2. Hemolysis
- 3. Viscosity
- 4. Hypoxia
- 5. Dehydration
- 6. Acidosis
- 7. Pain
 - a. Long bones
 - b. Abdomen
 - c. Back
 - d. Chest

iii. Hb SC disease

- 1. Less morbidity than patients with HbSS disease
- 2. Subject to crises in pregnancy (often diagnosed at this time)
 - a. Increased incidence of spontaneous abortion and preeclampsia
- 3. Crises may be accompanied by marked sequestration of a large volume of red blood cells in the spleen, with a dramatic fall in hematocrit.

a. Can see mild thrombocytopenia

iv. Thalassemias

- 1. Alpha-thalassemia minor
 - a. Mild microcytic anemia
 - b. results when there is a deletion of two of the four copies of the four α -globin genes
 - c. Patients with alpha-thalassemia and Hb SS have a less severe disease than those with Hb SS alone.
- 2. Beta-thalassemia minor
 - a. Mild, usually asymptomatic anemia
 - b. Often occurs with Hb S
 - i. No normal β-globin chains are produced
 - ii. No Hb A is produced
 - iii. Called Sickle Cell β-thalassemia
 - 1. Similar symptoms to Hb SS disease, but milder
 - 2. Good quality of life and lifespan

c. <u>Diagnosis</u>

- i. Diagnosis of all hemoglobinopathies is by hemoglobin electrophoresis
- ii. Newborn screening is automatic now, but only since 1988
- iii. All at-risk ethnic groups should be screened in pregnancy
- iv. Sickledex and other solubility tests are inadequate in differentiating between some of the genotypes

II. Management

a. Responding to Call Center Calls

- i. Determine whether or not the patient needs to go to the ED for further work up.
 - 1. Is patient unconscious/unarousable?
 - 2. Is patient vomiting and unable to hold down any medications?
 - 3. Has the patient lost vision?
 - 4. Does the patient have stroke symptoms? (slurred speech, inability to move one side of the body, etc)?
 - 5. Is patient febrile (>100.4 F)?
 - 6. Has the patient had a painful erection for more than 2 hours?
 - 7. If the main complaint is pain, has the patient:
 - a. tried hot bath/shower?
 - b. Tried increasing PO pain med (including NSAID)?
 - c. Drank as much water as possible?
- ii. If talking to another provider:
 - 1. Refer to the sections below to walk them through various treatment scenarios, if the physician is comfortable treating the patient.

b. In the ED:

- i. Tease out the History of Present Illness.
 - 1. Pain location, duration, severity. "Is this your normal pain?"
 - 2. Meds taken in last 24 hours?
 - 3. Normal pain medication regimen when in crisis?
 - 4. Medication compliance
 - 5. Venous Access?
 - 6. Last admission? Last clinic visit? Last transfusion? Primary Care provider?
 - 7. Number of crises per year? Number of ED visits per year?
 - 8. Vaccination Hx (influenza, pneumococcal, HBV, H.flu)
 - 9. Stroke symptoms?
 - 10. Acute chest syndrome?
 - 11. Avascular necrosis?
 - 12. Renal disease?
 - 13. Liver disease?
 - 14. Vision history?
 - 15. Skin ulcers?
 - 16. Priapism?
- ii. Administer IV bolus dose of opiate (5mg morphine or 1mg dilaudid, for example)
- iii. If still in pain 15 minutes, bolus again. Repeat until pain controlled, then schedule that cumulative dose every 4 hours.
- iv. Start 1 liter normal saline (or D5-1/2normal saline with 20meq of K+)
- v. Check following labs:
 - 1. CBC, BMP(with Ca, Phos, Mg), HPLC, ferritin, LFTs, Reticulocyte analysis
 - 2. **IF** the patient has fever *and* leukocytosis:
 - a. Blood, urine, sputum, wound cultures and CXR

c. In the hospital:

- Continue home dose of folate, hydroxyurea and/or Exjade, as well as other meds (tri-cyclic's, antiepileptics, SSRIS, diabetic meds, and anti-hypertensives, etc) unless contra-indicated.
- ii. **IF** patient's hemoglobin is less than 5g/dl **OR** level has dropped by 2g/dl below patient's baseline, **THEN** consider transfusion.
 - 1. TRANSFUSION MANAGEMENT:
 - a. In patients hospitalized for pain episodes and other events, the Hb concentration may fall well below the admission value. If the patient is stable and the reticulocyte count high (>20 percent or >250,000/μL), transfusions can be deferred

- b. Avoid transfusion if at all possible!
- c. If HbS% is less than 40%, NO TRANSFUSION IS NEEDED.
- d. The rational of transfusion is to reduce HbS%
- e. Leukocyte-reduced blood preferred
- f. NO ROLE in routine chronic transfusion in adults to prevent stroke
- g. Only transfuse to patient's baseline hemoglobin (NOT 10g/dl)
- h. NO role for prophylactic transfusion in PREGNANCY
- i. Hemoglobin >10g/dl associated with increased morbidity secondary to hyperviscosity
- j. The antigenic phenotype of the red cells (at least ABO, Rh, Kell, Duffy, Kidd, Lewis, Lutheran, P, and MNS groups) should be determined in all patients older than 6 months of age. A permanent record of the phenotyping should be maintained in the blood bank to optimize matching, and a copy of the record should be given to the patient or family.
- **k.** All patients with a history of prior transfusion should be screened for the presence of alloantibodies.
- iii. If patient has a history of stroke, and/or is having Acute Chest Syndrome, and/or is iron overloaded and anemic, then consider Exchange Transfusion.

1. EXCHANGE TRANSFUSIONS:

- a. In the setting of iron overload, stroke, multi-organ failure, acute chest syndrome and priapism.
- b. Purpose: to remove sickle cells and replace them with normal red blood cells without increasing whole blood viscosity or chronic iron burden.
- c. Goal: to get the Hemoglobin S% under 30%.
- d. Exchange transfusions do NOT hasten the resolution of a pain crisis

iv. Control pain.

- 1. Consider PCA administration of opiates. Reassess often.
- 2. Consider SCHEDULED administration of IV short-acting opiate, with prn IV opiate for breakthrough.
- 3. Recommend AVOIDING PRN administration of IV pain meds
- 4. If renal function **not** impaired, consider one time dose of 30mg IV ketorolac (toradol), which can work synergistically with opiates for pain control (Beware gastritis and GI bleeding).
- 5. Transition to oral pain medication WHILE STILL ON IV OPIATES. Beware of relapsed pain.

6. DO NOT USE DEMEROL

- Not recommended for first line treatment of acute pain in sickle cell disease because of CNS toxicity related to its metabolite, normeperidine
- b. Medication has long ½ life and is a cerebral irritant

- c. Should not be used for more than 48 hours, nor at doses more than 600mg in 24 hours
- d. Contraindicated in patients with renal impairment
- 7. DO NOT USE MORPHINE IN PATIENTS WITH RENAL IMPAIRMENT
- 8. Don't forget adjuvants (neurontin and/or tricyclic antidepressants, SSRIs for neuropathic pain, NSAIDS for bone pain/inflammation, acetaminophen, etc)
- While on opiates for pain control, the patient MUST be on SCHEDULED docusate and senna to promote regular bowel movements and combat constipation caused by narcotics.
- v. Treat all infections aggressively. Consider ID consult
- vi. Stroke? Consult Neurology
- vii. Pneumonia = Acute Chest Syndrome
 - 1. Treatment
 - a. Supplemental Oxygen
 - b. Transfusion
 - c. Antibiotics (Erythromycin, cephalosporin)
 - d. Pain control
 - e. Incentive Spirometry
 - f. Bronchodilators
- viii. Splenic Sequestration:
 - 1. Treatment
 - a. Observation
 - b. Chronic transfusion
 - c. Splenectomy
- ix. Priapism? Treat pain and consult Urology
- x. Loss of Vision? Consult Ophthalmology
- xi. Coordinate discharge with patient's primary care provider. Patient needs to be seen in the clinic within **2 weeks** of discharge.
- xii. Many of these patients have a PAIN CONTRACT with a specific physician and DO NOT NEED PO PAIN MEDICATIONS at time of discharge.
- d. In the Ambulatory setting:
 - i. NO ROLE for prophylactic antibiotic after age 5
 - ii. Daily folic acid of 1mg/day
 - iii. Routine visit every 3 months with blood counts
 - iv. Monthly visits may be necessary if patient is on chronic opiates
 - v. Hemoglobin electrophoresis at baseline, when not in crisis
 - vi. Yearly 2D Echo after age 15
 - vii. Yearly ophthalmological exam (rule out proliferative retinopathy)
 - viii. Yearly gynecological exam, with contraceptive counseling, if on hydroxyurea.
 - ix. Biannual BMP and urinalysis to monitor kidney function

- x. Vaccines:
 - 1. Yearly influenza vaccine
 - 2. Srep. Pneumoniae every 5 years
 - 3. H.Influenza at least once
 - 4. N. Meningitides every 2 years
 - 5. HBV vaccine
 - 6. HPV vaccine before age 26
- xi. Recommend SMOKING CESSATION
- xii. Encourage proper nutrition
- xiii. Avoid extremes in temperature, heavy physical exertion, stress and dehydration.
- xiv. Important Medications:
 - 1. Hydroxyurea:
 - a. Indications:
 - i. Acute chest syndrome
 - ii. 3 or more painful crises per year that interfere with daily activities
 - iii. Males and Females should avoid conception while on hydroxyurea due to teratogenicity
 - b. Mechanism of Action: increases concentration of Hb F in blood, thereby improving the oxygen-carrying capacity of RBCs.
 - c. Initial dose is 15mg/kg/day
 - d. Monitor CBC every 2 weeks after starting.
 - i. If blood counts stay in an acceptable range, dose may be increased by 5mg/kg/day every 12 weeks until the maximum tolerated dose or 35mg/kg/day is reached.
 - 1. Acceptable counts:
 - a. Neutrophils >2,500
 - b. Platelets >95K
 - c. Hemoglobin >5.3g/dl
 - ii. If blood counts are in the toxic range, treatment is discontinued until counts recover, then started back at reduced dose (reduce dose by 2.5mg/kg/day from the dose associated with hematologic toxicity.
 - 1. Toxic Counts:
 - a. Neutrophils <2,000
 - b. Platelets < 80K
 - c. Hemoglobin <4.5g/dl
 - e. MCV and %Hb F should increase. If they don't, consider noncompliance or drug failure.
 - i. Cautiously increase to a maximum dose of 35mg/kg/day, while monitoring blood counts
 - ii. After a trial period of 6-12 months with no increase in Hgb F or MCV, and no decrease in the amount of hospitalizations, consider discontinuing the medication.

2. Exjade (Deferasirox):

- a. Indications
 - i. Iron overload (Ferritin >1000)
- b. Contraindications
 - i. Poor performance status
 - ii. Poor renal function (creatinine more than 2 times upper limit of normal)
 - iii. Advanced malignancy
 - iv. Platelets less than 50K
 - v. High risk MDS
- c. Dosing
 - i. Start at 20mg/kg/day
 - ii. Take on an empty stomach, 30 minutes before eating
 - iii. Dissolve tablets in water or juice and drink immediately

III. References

a. NIH Publication No 02-2117 "The Management of Sickle Cell Disease, 4^{th} Edition", revised 5/28/02